Epic Envelopes by Generalized Flat Modules
نویسندگان
چکیده
We establish equivalent conditions under which every right Rmodule has an epic X -envelope, when X is a Tor-orthogonal class of left-Rmodules. As particular cases, one may recover and complete known results on various generalizations of flatness. MSC 2000. 16D50, 16D40.
منابع مشابه
Generalized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملA Note on Artinian Primes and Second Modules
Prime submodules and artinian prime modules are characterized. Furthermore, some previous results on prime modules and second modules are generalized.
متن کاملThe category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کامل